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Ggital Signal Processing — What?

= Signal

o A signal is formally defined as “a function of one or more variables
that conveys information on the nature of a physical
phenomenon.”

o Asignal, as the term implies, is a set of information or data.

= Signal Processing deals with the , ,

and of signals and the information they contain.
= System
o A signal is a system as , and the system

to the signal by producing another signal called the

Study: Neso Academy- Signals and Systems



https://www.youtube.com/playlist?list=PLBlnK6fEyqRhG6s3jYIU48CqsT5cyiDTO
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= Continuous Time Signals

= Discrete Time Signals
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1.3 Continuous-Time Signals

Continuous-time signals

A segment from the

vowel “0" of the word =
“hello”

t (ms)

A segment from the —
sound of a violin 5

t (ms)




1.3 Continuous-Time Signals

Signal operations

Addition of a constant offset

g(t)=z(t)+ A

9(t)=x(t)+ A

Signal Operation




1.3 Continuous-Time Signals

Signal operations (continued)

Multiplication by a constant gain factor

g(t) = Bz(t)

t
Tmin }» ————————— v
q Lf) =Bxr {f)'l
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1.3 Continuous-Time Signals

Signal operations (continued)

Adding two signals

9(t) ==z1(t) +22 ()
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ﬁ’» Continuous-Time Signals

Signal operations (continued)

Multiplying two signals

g(t) =21 (t) 22(¢)

T
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—//\"—\ S~
v NS

\f

Ta Lf)

L

I

g(t) =z (t) 2 (t)
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1.3 Continuous-Time Signals

Example 1.1

Constant offset and gain

Consider the signal shown. Sketch the
signals

a. g1(t) =15z (t) -1

b. g2(t) = —13z(t) +1

Solution:

g1 (1)




1.3 Continuous-Time Signals

Interactive demo: sop demol

Experiment by varying parameters A and B.

B signal Operations Demo 1 - (c) Oktay Alkin  [Signals and Systems: & MATLAB-Integrated Approach] a = 'f:'. g&
o -
Elementary Signal Operations - 1

Eefer to; Section 1.3.1, Pages 5 i e
through 9, Egns. [1.1] through [1.2] @ 04 ] T" i B 18 ] rlt)=18=(t)+04d
. b “ v

Figs. 1.4 and 1.5, Exampla 1.1

The signel g(t) =Ba(t) +4

The signal = [£)
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1.3 Continuous-Time Signals

Example 1.2

Arithmetic operations with continuous-time signals

Given the signals z1 (¢) and z2 (t), sketch the signals
d. g1 (t) — 1 (t)—i—mg (f)
b. gs (t) = 1 (t) 9 (t)




Example 1.2 (continued)

Solution - Part(a):

g1 (t) = <

2, 0<t<l1

1, 1<t<?2

1, 2<t<3

l 0, otherwise
o (1)

) B i 3

.

st+2, 0<t<1

st+1, 1<t<2

—2t+4, 2<t<3

t—4, 3<t<d

0, otherwise

1.3 Continuous-Time Signals

—2t+5,

0 <t <2
2<t<3
3<t< 4

otherwise




1.3 Continuous-Time Signals

Example 1.2 (continued)

Solution - Part(b):

(2, 0<t<l1
1 1 <t <2
Zl(f):< ’
-1, 2<t<C3
(0, otherwise
o (t)
N
|
1 2
S ||
¢, 0<t<l
1
=1 1 <t<C2
g2 () — 5T <t <
2 -5, 2<t<3
0, otherwise

92

{

—2t+5,

0<t<C2
2t <3
3<t< 4

otherwise

(t) = =y () 25 (1)




1.3 Continuous-Time Signals

Signal operations (continued)

Time shifting
z(t)
(a)
g9(t) ==z (t—ta)
0 S
ty \_/
(b) g(t) =2(t —tg)
tg =0
ﬂ\ o,
i+t N\
© g(t) = z(t — tg)
_/\/\ t; <0
N t
btte | N




1.3 Continuous-Time Signals

Signal operations (continued)

Time scaling

g(t) = = (at)

(a)
/"-'N.-__.-—-
O Y
Y — 2 (at)
(b) g(t) = z(at)
/\-\ a > 1
|
n \/
a
g9(t)=z(at)
(c)

__/

a < 1
I /-—---.._____———-
: t

51

a

N~




@ Continuous-Time Signals \

Signal operations (continued)

Time reversal
T {t

g9(t) = z(-t)

/ t
t \NZ

)
g(t) =z (-t)

— /-/\\— t

N /




1.3 Continuous-Time Signals

Interactive demo: sop demo?2

Experiment by varying applicable parameter values.

B Signal Operations Demo 2 - (c) Oktay Alkin  [Signals and Systems: A MATL;QE-Integmted Approach] E@‘l |
o -
Elementary Signal Operations - 2

Refer ta: Section 1.3.1, Pages 5 through 15
12, Egns. [1.3) thraugh [1.11], Figs. 1L
1.6 through 1.15, Example 1.2.

05¢
(]
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Salact operation: 15
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glt=a(-t)
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Scale parameter (@)
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1.3 Continuous-Time Signals

Example 1.3

Basic operations for continuous-time
signals z(t)

Consider the signal z (¢) shown. Sketch -
the following signals: 1

a. g(t) = z(2t — 5),
b. h(t) = z(—4t + 2).




1.3 Continuous-Time Signals

Example 1.3 (continued)

Solution - Part(a):

g(t)=g1(t—25) =z (2[t—25]) =z (2t —5)

x(t)
2
T1
| ) G
: — t
—1 1 2 IR
(a)
g1 (t) =z (2t) / g(t)=g1(t —2.5)
’ 2
—— -
L 1 L
2 3
—0 1 I ' |1 2 3




1.3 Continuous-Time Signals

Example 1.3 (continued)

Solution - Part(b):

ho(t) = h1 (¢t +0.5) =z (4[t+0.5)) = z (4t + 2)

h(t) = hy (—t) = z (—4t + 2)

2 —1 N

(b)
h(t) = hy (~1)

2

=1 1

—2

(d)




1.3 Continuous-Time Signals

Integration and differentiation

Integration and differentiation operations are used extensively in the study of linear systems.
Given a continuous-time signal z (t), a new signal g () may be defined as its time derivative

in the form
dz (1) |
9(t) = — (1.12)

A practical example of this is the relationship between the current ic (t) and the voltage
ve (t) of an ideal capacitor with capacitance C' as given by

duc (1)

ic(t)=0C 7

ve (1)

N /N
Vo

(1.13)

ic (1)

(b)




1.3 Continuous-Time Signals

Integration and differentiation

Similarly, a signal can be defined as the integral of another signal in the form

g (1) —/ £ (2) dA (1.14)

The relationship between the current iy, (t) and the voltage vy, (£) of an ideal inductor can
serve as an example of this. Specifically we have

1 t
ir (f):z/ or, (N) dA (1.15)
vy, (t)
(a)
t
(b) I : I : I :
. WANRIWAS
/N N\




1.3 Continuous-Time Signals

Basic building blocks

@ Unit-impulse function
@ Unit-step function

@ Unit-pulse function

o
=)

o

@ Unit-ramp function

@ Unit-triangle function
&)

@ Sinusoidal signals

Basic building blocks



1.3 Continuous-Time Signals

Unit-impulse function

Mathematical definition

B 0, ift+£0 1
é(t) = { undefined, ift =0 I

./Oo §(t) dt =1

The value displayed next to the up arrow is not an amplitude value. Rather, it
represents the area of the impulse function.




1.3 Continuous-Time Signals

Unit-impulse function

Mathematical definition

B 0, ift£0
I = { undefined, ift =0

l/m)5ﬁ)dt:1

Scaling and time shifting:

B 0, it Lt
ad(t tl)_{ undefined , ift—t;

and -
/ ab(t—t1)dt=a

(J(S(t—fl)




1.3 Continuous-Time Signals

Obtaining unit-impulse function from a rectangular pulse

a
— ‘t<§
Let g (t) = a
a
0 t > =
2

As the pulse becomes narrower, it also becomes taller as shown in Figure.
The area under the pulse remains unity. In the limit, as the parameter a

approaches zero, the pulse approaches an impulse.




1.3 Continuous-Time Signals

-/\/- e S/H ‘ Quantizer - output
nme

e ——

clock
b amplirude
300 4 Sequence of numbers Stage 2
. from quantizer
w I I ]
0+ o--o-'? T = C» [...00 +15 +60, +85, +72, +28, -17, -30, -21, -8, -1, ...}

‘;"s-.l-L"a-.o- o




1.3 Continuous-Time Signals

Sampling property of the unit-impulse function

F(t)6(t—t1) = f(t1) 8(t —t1)

| t1 \_/\ Ft)8(t—t)
@—’ f(t1)
Vi 1

| ts

The function f(¢) must be continuous at ¢t = ¢1.

The impulse function has two fundamental properties that are useful.
The first one, referred to as the sampling property




1.3 Continuous-Time Signals

Sifting property of the unit-impulse function

/Oo F(E) 8 (t—t1) dt = F (t1)

t1+ AL
/ F(8) 8(t—t1) dt = f(t1)

t1 — At

The function f(Z) must be continuous at ¢ = ¢;. Also, At > 0.

Shifting property. The integral of the product of a function f(f) and a time-
shifted unit-impulse function is equal to the value of f(f) evaluated at the
location of the unit impulse.




1.3 Continuous-Time Signals

Unit-step function

Mathematical definition

Time shifting the unit-step function:

=

(t)

1, t>t
u(t_tl):{o t <t |

we need to model a signal that is turned on or off at a specific time instant.




@ Continuous-Time Signals \

Using the unit-step function to turn a signal on

m(t):sin(2ﬂfot)u(t—t1):{ Sin@gﬁ’t) ’ zzz

x (t) = sin (27 fot) w (t — t,)

peSmI R ITITITIT
A \ T

N /




@ Continuous-Time Signals

Using the unit-step function to turn a signal off

sin (27 fot) , t<t1

m(t):sin(2ﬁf0f)u(_f+t1):{ 0, t >t

U,{—f + fl]

(t) = sin (27 fot) w (—t +t;)

Mww\

o Ui




1.3 Continuous-Time Signals

Unit-pulse function

Mathematical definition

a rectangular pulse with unit width and unit amplitude, centered around the origin




1.3 Continuous-Time Signals

Constructing a unit-pulse from unit-step functions

T =u(+}) -u(e-d




1.3 Continuous-Time Signals

Unit-ramp function

Mathematical definition

t, -~ ) B
r(t) = { 0 t<0 or, equivalently r(t) = tu(t)

t r(t)=tul(t)




@ Continuous-Time Signals

Unit-triangle function

Mathematical definition

N

t+1,
Au){t+L

0,

~1<t<0
0<t<1

otherwise




1.3 Continuous-Time Signals

Sinusoidal signals

Sinusoidal signal

z(t) = A cos(wot + 6)

A : Amplitude
wo : Radian frequency (rad/s)
6 : Phase (radians)

NIV ANIVANIVAY

Cos(0)=1,-6




1.3 Continuous-Time Signals

Interactive demo: sin demo?2

Experiment by varying the amplitude A, the frequency fp and the phase 6.

- ——— ; o
Bl Sinuscidal Signal Deme 1 - ) Oktay Alkin [5ignals ana.Systems: A MATLAB-Integrated Approach] 4
¥ s

Continuous-Time Sinusoidal Signal

Referto: Pages 27 and 24,
Eqns {1 44 thraugh (147,

i = I8
Fig. 1.41. g ; | . . ;
5160 = A cos [Befot +9) 1 L, SR— S S— NN S—, N i
A=3 o= 180 Hz, :
# =45
Amplitude (A) 2
4 | d
— = o
=
Frequency (0} in Hz: 150 ;;
.| | q| E
| <
Phase (theta) in degrees a5 E
<| v
[¥| Display annctations ;
R i o e s st st i
) | | 1 | i 1 |
=20 -15 -10 -5 0 9 1o 15 20




1.3 Continuous-Time Signals

Real vs. complex signals

Complex signal in Cartesian form

z(t) =2r(t)+ 724 (2)

2(t) = [23() +22(t)]

ALz(t) = tan ! {zi?)]

Complex signal in polar form

z (t) = |z (t)| <=1

z-(t) = z(t) cos(Lz(t))

z;(t) = z(t) sin(4Lz(t))

Signal Classifications




1.3 Continuous-Time Signals

Periodic signals

A signal is said to be periodic if it satisfies

z(t+To) =z ()

at all time instants ¢, and for a specific value of Tp # 0.

If a signal is periodic with period Tp, then it is also periodic with periods of
2Ty, 3T0,...,kTy, ... where k is any integer.

The fundamental frequency of a periodic signal is defined as the reciprocal of its
fundamental period: fo=1/ To




1.3 Continuous-Time Signals

Example 1.4

Working with a complex periodic signal

Consider a signal defined by
2 (t) =2 (£) + 2 (¢)
—A cos (27 fot + 8) + 7 A sin (27 fot + 6)

Graph the components in Cartesian and polar representations of this signal.

» MATLAB Exercise 1.4




1.3 Continuous-Time Signals

Example |.4: Working with a complex periodic signal

Consider a signal defined by
z (t) =z, (t) +z; (1)
=A cos (2m fot + 0) + j A sin (27 fot + 0)

Using Eqns. (1.57) and (1.58), polar complex form of this signal can be obtained as z (t) =
lz ()| €74 with magnitude and phase given by

1/2
2 (1) = [[A cos (27 fot + 0)]> + [A sin 2 fot + 0> | =4 (1.66)
and
Lx(t) = tan™! l:; %:;Zi j_- f}” — tan™ ! [tan (27 fot + 6)] = 27 fot + 6 (1.67)

respectively. In deriving the results in Eqns. (1.66) and (1.67) we have relied on the ap-
propriate trigonometric identities.? Once the magnitude |z ()| and the phase £z (t) are
obtained, we can express the signal z (t) in polar complex form:

z(t) = |z (t)| <) = Al Arfottt) (1.68)

The components of the Cartesian and polar complex forms of the signal are shown in Fig.
1.44. The real and imaginary parts of z (¢) have a 90 degree phase difference between them.
When the real part of the signal goes through a peak, the imaginary part goes through zero
and vice versa. The phase of z (t) was found in Eqn. (1.66) to be a linear function of the

4 cos?(a) +sin? (a) = 1, and tan (a) = sin (a) / cos (a) .




1.3 Continuous-Time Signals

Deterministic vs. Random signals

Deterministic signals are those that can be described completely in the
analytical form in the time domain.

Random signals, on the other hand, are signals that occur due to random
phenomena that cannot be modeled analytically.

An example of a random signal is the vibration signal recorded during an
earthquake by a seismograph.




1.3 Continuous-Time Signals

Energy computations

Normalized energy of a signal

m:l/m z? (t) dt

if the integral can be computed.

Normalized energy of a complex signal

fo’s}
E’.c:/ Z(f)zd‘t
J —00

if the integral can be computed.

e >0 2 ray » .}O._ P o o .2
E=[ v (t)i(t) df:[ ‘TE"-HH E—/_x}-w(ﬂf-(f) dt—/_xﬁ’z (t) dt

L

With physical signals and systems, the concept of energy is associated with a
signal that is applied to a load.
The signal source delivers the energy which must be dissipated by the load.

Energy and Power




1.3 Continuous-Time Signals

Time averaging operator

Time average of a signal periodic with period Tp

We will use the operator < x (t) > to indicate the time average.




1.3 Continuous-Time Signals

Power computations

Normalized instantaneous power (real

Normalized instantaneous power

signal)

Prorm(t) = z° ()

Normalized average power (real signal)

Pr = (2% (t))

(complex signal)

pnorm(t) = $(‘t) 2

Normalized average power (complex

signal)

P: = |z (t)?)




1.3 Continuous-Time Signals

Energy signals vs. power signals

@ Energy signals are those that have finite energy, and zero power.
E;r, < 00, and P;p, = 0.

@ Power signals are those that have finite power and infinite energy.
B, — oo, and P, < oo.

all voltage and current signals that can be generated in the laboratory or that
occur in the electronic devices that we use in our daily lives are enerqy

signals.

A power signal is impossible to produce in any practical setting since doing so
would require an infinite amount of energy. The concept of a power signal
exists as a mathematical idealization only.




1.3 Continuous-Time Signals

Symmetry properties

A real-valued signal is said to have even A real-valued signal is said to have odd
symmetry if it has the property symmetry if it has the property

z(—t) =z (¢) z(—t) = —z(t)
for all values of t. ) for all values of t. )

x (t) z(t)

wﬂ\w t \/K t
Time reversal

wee J A —
(b) B Sl

Symmetry properties



1.3 Continuous-Time Signals

Graphical representation of sinusoidal signals using phasors

z(t) = Acos (27 fot +8)

Let the phasor X be
defined as

X £ Ael?

so that

z(t) = Re{Aej(gﬂf°t+9) }

= Re{Xeszfot}

Imag
A sind ———_72'} X
™7 |
7 |
|
7 [
Nd 'n'H |
A cos#

Real

A cos (2mfot, +6) >

;t(t]

P
A cos (2w fot, + 6) Y
|
|
|
|

Rotates f[]

times per sec.

Real

-
-

e/(irt) in 3.14 minutes



../e^(iπ) in 3.14 minutes, using dynamics _ DE5.mp4

1.4 Discrete-Time Signals

Discrete-time signals

A discrete-time signal.

9000

Iuil e I|||'

Dow Jones Industrial 8000 | Te11.11 1

= I

10 20 30 40 50 60

Index n

Discrete-time signals are not defined at all time instants. Instead, they are
defined only at _time instants that are integer multiples of a fixed time
increment T, that is, att = nT.




1.4 Discrete-Time Signals

Signal operations

Addition of a constant offset

gln] = z[n] + A

.

Signal Operation



1.4 Discrete-Time Signals

Signal operations (continued)

Multiplication by a constant gain factor

g[n] = B z[n]

gln] = Bafn)

B Tmax

B

1

mmﬂ”

B

HMH“ Ifll ;ﬂnmmm .
11




m Discrete-Time Signals \
Signal operations (continued)

Adding two signals

gln] = o1[n] + 221n] o H”H“]HIHI i

I

. ’, fﬂﬂ n
\ 1t 11”1 [ Ul /




m Discrete-Time Signals \

Signal operations (continued)

Multiplying two signals

g[n] = z1[n]z2[n]

I




m Discrete-Time Signals

Signal operations (continued)

Time shifting

(a) i
i
L Integer ol lhTmTT. Rl
g ‘ allul;
) gln] = z[n — k]
/ k>0
mnﬂmmmmITTmT.‘lul“_mmmrm n
n, +k

© gln] = z[n — k]

/

\ ’""”T”H”mmhnﬂr.,l ey N
k] T




1.4 Discrete-Time Signals

Signal operations (continued)

Time scaling

z[n]

e =abs rirerrd ” ﬁ ”—Hq” ITIT” 1T rm 18 20 22 Jle-r11t-

k: integer 10 -8 —6 —4 —2 ‘ 2 4

2 1 6L 26 o8




1.4 Discrete-Time

Signal operations (continued)

Signals

Time scaling example (downsampling)

g[n] = z[2n]

gln] = z[2n] R




1.4 Discrete-Time Signals

Signal operations (continued)

Time scaling example (downsampling)

g[n] = z[3n]

¥
(S
rs
L
r— e — — — — o — — )
—
[\_'(-— [ o]
. X
=

|
|
o




1.4 Discrete-Time Signals

Signal operations (continued)

An alternative form of time scaling (upsampling)

gln] = z[n/2] How do we handle odd values of n?

g[n] = { m[n/2] , if TL/2 is integer

0, otherwise

-3 -2 -1 0 1 2 3 4 5
’ / A ~ ~ ~o
4 / -flr : \\ N S \"".\ e
e £ / 1 \ A Y ~ -
/ 7 N -~ ~ -~
’ , / ! \ \ e -
il / f : \\ \\ RS = T~a
g[n] = z[n/2] e / / I N\ = S
) ‘ ’ y ¥
oeven K/ ¥ ] l

|
|
[Sa ¥ ]
|
|
(]
|
[ o]
I

=1




ﬁl Discrete-Time Signals \

Signal operations (continued)

Time reversal

/

mmrﬂlmHmhnm

*..TTTTrm'r'rTr n

Te
gt

1

z[—n)|
N\

ttmmtitre, ‘.Tm”ﬂﬂHm\mh‘mn
Il ‘

(b)

g Y,




1.4 Discrete-Time Signals

Basic building blocks

@ Unit-impulse function
@ Unit-step function
@ Unit-ramp function

@ Sinusoidal signals

Basic building blocks



1.4 Discrete-Time Signals

Unit-impulse function

Mathematical definition




1.4 Discrete-Time Signals

Sampling property of the unit-impulse function




1.4 Discrete-Time Signals

Unit-step function

Mathematical definition




m Discrete-Time Signals

Unit-ramp function

Mathematical definition

r[n]:{ 0:

or, equivalently

n >0
n <0

r[n] = nu[n]

g[n] =

[

0 /

,rﬂ””H "

\®—> v_#mm{t




1.4 Discrete-Time Signals

Sinusoidal signals

I il

= ; ”H""hr1

b IIHIII“‘

11111““| |

“hr

ﬂlﬂmmlh

ﬂmmmlh

ﬂ

kR B

8

w




1.4 Discrete-Time Signals

Characteristics of discrete-time sinusoids

@ For continuous-time sinusoidal signal z4 (t) = A cos (wot): wo is in rad/s.
@ For discrete-time sinusoidal signal z[n] = A cos (Q0on): o is in radians.

zq (t) = A cos (wot + 6) z[n] =zq (nTs) Qo = woTs
—A cos (woTsn + 8) Fo = foTs
—A cos (27 foTsn + 6) Qo = 2w Fy
zq (1)
ir\\ —9T, —T. i 3T 4T, 5T, L | I
L ‘ T, 9T AT L t
z[n]




1.4 Discrete-Time Signals

Real vs. complex signals

Complex signal in Cartesian form Complex signal in polar form
z[n] = z»[n] + 7 z;[n] z[n] = |z[n]| 7<=
z[n]l = (m,p[n] T [n]) zr[n] = |z[n] cos(Lz[n])

zi[n

ALz[n] = tan ! (

S
8
P
2,
I
5]
=,
z.
=}
—
P
5]
S,

zr(n

Signal Classifications



1.4 Discrete-Time Signals

Periodic signals

Definition

A signal is said to be periodic if it satisfies

z[n + N| = z[n]

for all integer n and for a specific value of N £ 0.

_3 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

If a signal is periodic with period N, then it is also periodic with periods of
2N,2N, ... ,kN,... where k is any integer.




1.4 Discrete-Time Signals

Energy computations

Normalized energy of a signal
By = Z z2[n]

cO

if the result of the summation can be computed.

Normalized energy of a complex signal

cO

B, :z x[n]z

cO

if the result of the summation can be computed.

Energy and Power



1.4 Discrete-Time Signals

Power computations

Normalized avg. power (real signal) Normalized avg. power (complex signal)
P, = (2%[n]) P, = {|z[n]* )
Periodic signal: Periodic signal:
A, A,
2 2 = ?
P, = sz (n] Py = Z‘m[n]‘
Non-periodic signal: Non-periodic signal:

) 1 o ) 1 o
Pm:ﬂjinoo [2M+1 Z mg[n]] Pm:ﬂ}inoo [2M+1 sz[n]2]




Symmetry properties

Even symmetry

A real-valued signal is said to have even
symmetry if it has the property

z[—n] = z[n]

for all integer values of n.

x[n]

1.4 Discrete-Time Signals

Odd symmetry

A real-valued signal is said to have odd
symmetry if it has the property

for all integer values of n.

x[n]

“”””l“llll””lmn
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1.4 Discrete-Time Signals

MATLAB Exercise 1.6

Compute and graph the signal

z1[n]={1.1, 25,3.7,3.2,26}
1

n—>5

for the index range 4 < n < 8.

n=1[4:8];
x1l =1]1.1,2.5,3.7,3.2,2.6]1;
stem(n,x1);




Conclusion
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